Chemistry Letters 1997 223 ## Solvent-Dependent Quenching of the Lowest Excited Singlet State of 9,10-Dichloroanthracene by Ground-State 2,5-Dimethylhexa-2,4-diene Yielding 9-Chloroanthracene in Acetonitrile or the [4+2]Adduct in *n*-Heptane Toshihiro Nakayama, Yutaka Amijima, Sadao Miki, and Kumao Hamanoue* Department of Chemistry, Kyoto Institute of Thechnology, Matsugasaki, Sakyo-ku, Kyoto 606 (Received November 11, 1996) In acetonitrile, an exciplex formed between the lowest excited singlet state ($^{1}\text{DCA*}$) of 9,10-dichloroanthracene (DCA) and ground-state 2,5-dimethylhexa-2,4-diene (DMHD) generates the DCA radical anion as an intermediate for dechlorination of DCA yielding 9-chloroanthracene. In n-heptane, however, quenching of $^{1}\text{DCA*}$ by DMHD forms no exciplex and a dibenzobicyclo[2.2.2]octadiene-type compound (the [4+2] adduct) is obtained as the final product. In acetonitrile (CH₃CN) containing N, N-dimethylaniline (DMA) or triethylamine (TEA), nanosecond laser photolysis and steady-state photolysis of 9, 10-dichloroanthracene (DCA)¹ and 9,10-dibromoanthracene $(DBA)^2$ reveal that the intermediates for their dehalogenation yielding 9-haloanthracenes are the haloanthracene radical anions. Furthermore, picosecond laser photolysis of DBA in CH₃CN-DMA reveals that formation of an exciplex between the lowest excited singlet state (1DBA*) of DBA and ground-state DMA is followed by decomposition into the DBA radical anion (DBA •) and the DMA radical cation.³ In CH₃CN-TEA, however, no exciplex formation can be seen but nanosecond laser photolysis reveals the existence of DBA . It thus is proposed that quenching of ¹DBA* by TEA in CH₃CN forms a non-emissive short-lived encounter complex or ion pair followed by rapid generation of DBA • present paper deals with the excited-state dynamics of DCA in CH₃CN and n-heptane (HP) containing 2,5dimethylhexa-2,4-diene (DMHD), because the final photoproduct in CH3CN is 9-chloroanthracene (CA) but that in HP is a dibenzobicyclo[2.2.2]octadienetype compound (the [4+2] adduct). Figure 1. Transient absorption spectra obtained by sub-picosecond laser photolysis of DCA in (a) ${\rm CH_3CN}$ and (b) HP containing 1 M DMHD. DCA (Aldrich) was recrystallized three times from ethanol. DMHD (Aldrich) was distilled immediately before use and spectral-grade CH₃CN (Dojin) was dried using molecular sieves 3A (Wako); spectral-grade HP (Dojin) was used without further purification. The sample solution was not degassed and sub-picosecond laser photolysis at room temperature was performed using the second harmonic (400 nm) from a femtosecond mode-locked Ti:sapphire laser amplified by a regenerative amplifier. As shown in Figure 1a, the transient absorption spectra obtained in CH_3CN-DMHD(1 M) indicate that an absorption (band B_M with $\lambda_{max}{=}595$ nm) decreases with time accompanied by the increment and then decrement of another absorption (band B_E with $\lambda_{max}{=}680$ nm). Bands B_M and B_E are assigned to absorptions of the lowest excited singlet state (1DCA*) of DCA and an exciplex [$^1(DCA-DMHD)*$] of 1DCA* with DMHD, respectively. This is based on the following facts; (1) band B_M is very similar to the singlet-singlet (S' \leftarrow S_1) absorption band due to 1DBA* ; 3 (2) in the absence of DMHD, the decay rate constant of S' \leftarrow S_1 absorption due to 1DCA* is equal to its fluorescence decay rate constant ($k_M{=}1.2x10^8~s^{-1}$); 1 (3) band B_E is similar to the absorption band due to an exciplex of 1DBA* with amine (DMA or TEA); 3 (4) addition of DMHD (0.5 or 1 M) in CH_3CN gives rise to the appearance of a broad emission band ($\lambda_{max}{\approx}540$ nm) similar to those of 1DBA* -amine exciplexes. 3 As shown in Figure 2, the absorbance changes of bands B_M $[A_M(t)/A_M(max)]$ and B_E $[A_E(t)/A_E(max)]$ with time suggest that the band intensities reach the constant values at delay times longer than 1 Figure 2. $A_M(t)/A_M(max)$ [monitored at 595 nm (\bigcirc)] and $A_E(t)/A_E(max)$ [monitored at 680 nm (\bigcirc)] obtained in CH₃CN-DMHD(1 M). The solid and dashed biexponential functions (with rate constants k_1 and k_2) are the best-fit absorbances calculated for the superposition of absorptions due to 1 DCA*, 1 (DCA-DMHD)* and DCA*-. 224 Chemistry Letters 1997 ns. The residual absorption band observed after the disappearance of ${}^{1}(DCA-DMHD)*$ can be ascribed to the absorption of the DCA radical anion (DCA -), because the spectrum at 1 ns delay shown in Figure la is similar to that of DCA obtained by nanosecond laser photolysis of DCA in ${\rm CH_3CN}$ containing 1 M DMHD 5 or amine (DMA or TEA). The solid and dashed bi-exponential functions (with rate constants \mathbf{k}_1 and \mathbf{k}_2) shown in Figure 2 are the bestfit absorbances calculated as follows; (1) both bands B_M and B_E are interpreted in terms of the superposition of absorptions due to $^1\mathrm{DCA*}$, $^1\mathrm{(DCA-DMHD)*}$ and $^0\mathrm{DCA*}$, and their concentrations at a given delay time are calculated on the basis of Scheme 1;6 (2) a Gaussian intensity function with a full width at the half-maximum intensity of 0.25 ps is assumed for both the excitation and probing light pulses. Hence, the sum of rate constants k_1 and k_2 should be equal to k_q [DMHD]+ $k'+k_E+k_M$. If l (DCA-DMHD)* is formed by diffusion-controlled quenching of l DCA* by DMHD, the corresponding rate constant ($k_q=1.9\times10^{10}$ M $^{-1}$ s $^{-1}$) can be estimated by the Debye-Smoluchowski equation ($k_q=1.9\times10^{10}$ M $^{-1}$ s $^{-1}$) constant (k_q =1.9x10²⁰ M s s) can be estimated by the Debye-Smoluchowski equation (k_q =8RT/3000 η) using the viscosity (η =0.345 cp) of CH₃CN at 25 °C. And then, k'+ k_E =2.6x10⁹ s⁻¹ is obtained by a choice of [DMHD]=1 M, k_1 =2.0x10¹⁰ s⁻¹ and k_2 =1.7x 10⁹ s⁻¹. On the basis of Scheme 1, the efficiency for repopulation of ¹DCA* from ¹(DCA-DMHD)* can be defined by $\gamma=k'/(k'+k_E)$ and $k_q(1-\gamma)/k_M$ should be equal to 69.1 M^{-1} which is the slope of straight line obtained by a Stern-Volmer plot of the ¹DCA* fluorescence intensity against the concentration of DMHD. Since $\gamma=k'/(k'+k_E)$ is found to be 0.58, a combination of this value with $k'+k_E=2.6x10^9$ s⁻¹ indicates that the decay rate constants of $^1(\text{DCA-DMHD})*$ are $\text{k'=1.5x10}^9~\text{s}^{-1}$ and $\text{k}_E\text{=1.1x10}^9~\text{s}^{-1}$ which are comparable with those (k'=2.7x10 $^9~\text{s}^{-1}$ and k $_E\text{=4.8x10}^9~\text{s}^{-1})$ obtained for the $^1\text{DBA*-DMA}$ exciplex in CH $_3\text{CN}$. Scheme 1. We thus believe that DCA $^{\bullet}$ generated by decomposition of $^1(\text{DCA-DMHD})*$ is an intermediate for dechlorination of DCA yielding CA. Meanwhile, Smothers et al. 7 have reported that $^1(\text{DCA-DMHD})*$ is formed not only by a reaction of $^1\text{DCA}*$ with DMHD but also by direct excitation of a ground-state DCA-DMHD complex. If this is correct, one should observe the buildup of absorption due to $^1(\text{DCA-DMHD})*$ within a duration of the excitation light pulse. In contrast, Figure 2 indicates that band B_E never grows in within a duration of sub-picosecond pulse excitation. Furthermore, examination of the absorption spectral change of DCA upon addition of DMHD in CH_3CN reflects no formation of the ground-state DCA-DMHD complex. Although formation of a triplex betweeven $^1(\text{DCA-DMHD})*$ and DMHD is also reported by Smothers et al., 7 no such an evidence has been obtained, i.e., the results obtained in ${\rm CH_3CN-DMHD}$ can well be explained by Scheme 1. Upon steady-state photolysis of DCA in HP-DMHD(1 M), we have observed formation of a dibenzobicyclo-[2.2.2]octadiene-type compound (the [4+2] adduct). Although Saltiel et al. 8 have reported that $^1({\rm DCA-}$ DMHD)* is the precursor for formation of this [4+2] adduct in benzene-DMHD, no emission and absorption due to $^1({\rm DCA-DMHD})*$ can be seen not only in benzene -DMHD but also in HP-DMHD, i.e., normalization of the $S' \leftarrow S_1$ absorption spectrum (obtained in HP without DMĤD) to all the transient absorption spectra shown in Figure 1b reveals no existence of an absorption band due to $^{1}(DCA-DMHD)*$. In HP-DMHD(1 M), furthermore, an intensity plot of band B_{M} against time indicates that $^{\mathrm{I}}\mathrm{DCA}*$ is populated within a duration of sub-picosecond pulse excitation and then disappears following a singleexponential function with a decay rate constant of k_D =6.0x10⁹ s⁻¹. Hence, a choice of the decay rate constant (k_M =1.2x10⁸ s⁻¹) obtained for ¹DCA* in HP without DMHD gives the quenching rate constant of ¹DCA* by 1 M DMHD to be k_q =(k_D - k_M)/[DMHD]=5.9x10⁹ M⁻¹ s⁻¹. Dividing k_q thus obtained by k_M , one can get the value of 49.2 M⁻¹ which is nearly equal to the slope (51.7 M⁻¹) of straight line obtained by a Stern-Volmer plot of the ¹DCA* fluorescence intensity against the concentration of DMHD in HP. This sity against the concentration of DMHD in HP. This indicates that quenching of ¹DCA* by DMHD is a diffusion-controlled reaction. Since [4+2] addition of DMHD to 1 DCA* is forbidden, 9 we suppose that quenching of ¹DCA* by DMHD in HP causes stepwise reactions yielding the [4+2] adduct finally. Experimental works along this line are in progress. This work was supported by a Grant-in-Aid for Priority-Area-Research on Photoreaction Dynamics from the Ministry of Education, Science, Sports and Culture of Japan (No. 06239101 and 06239106). ## References - 1 K. Hamanoue, T. Nakayama, K. Ikenaga, and K. Ibuki, J. Phys. Chem., 96, 10297 (1992). - 2 K. Hamanoue, T. Nakayama, K. Ikenaga, K. Ibuki, and A. Otani, J. Photochem. Photobiol. A:Chem., 69, 305 (1993). - 3 T. Nakayama, T. Hamana, P. Jana, S. Akimoto, I. Yamazaki, and K. Hamanoue, J. Phys. Chem., 100, 18431 (1996). - 4 T. Nakayama, Y. Amijima, K. Ushida, and K. Hamanoue, *Chem. Phys. Lett.*, **258**, 663 (1966). - 5 Y. Amijima, T. Nagahara, T. Nakayama, and K. Hamanoue, The 1996 Symposium on Molecular Science, Fukuoka, Japan, Abstr., 2J14. - 6 J.B. Birks, "Photophysics of Aromatic Molecules," Wiley-Interscience, New York(1970), Chap. 7. - 7 W.K. Smothers, K.S. Schange, and J. Saltiel, J. Am. Chem. Soc., 101, 1895 (1979), and references cited therein. - 8 J. Saltiel, R. Dabestani, D.F. Sears, Jr., W.M. McGowan, and E.F. Hilinski, J. Am. Chem. Soc., 117, 9129 (1995). - 9 R.B. Woodward and R. Hoffman, Angew. Chem., Int. Ed. Engl., 8, 781 (1969).